UNIT - I

	Introduction: Tell Everyone the Truth All the Time, Trust Your Team, Review Everything, Test Everything, All Software Engineers Are Created Equal, Doing the Project Right Is Most Efficient.

Software Project Planning: Understand the Project Needs; Create the Project Plan, Diagnosing Project Planning Problems.
Estimation: Elements of a Successful Estimate, Wideband Delphi Estimation, Other Estimation Techniques, Diagnosing Estimation Problems.

Chapter 1: Introduction

Software Project Management is the art and science of planning and leading software projects. It requires knowledge of the entire software development lifecycle includes defining the vision, planning the tasks, gathering the people who will do the work, estimating the effort, creating the schedule, overseeing the work, gathering the requirements, designing and programming the software, and testing the end product. Throughout the process, there are many team members who are responsible for these tasks as follows:

· A project manager responsible for a software development project and/or team.
· A programmer, designer, business analyst, architect, tester, or other member of a software team looking to improve the product.
· The project manager needs to have enough knowledge of their work to make sure the project is staying on track. To be effective, a project manager must have a wide range of expertise.
· A quality assurance manager or team member who is attempting to implement defect prevention, or is responsible for establishing or improving an organization’s software process.
· A consultant hired to improve project management practices, software process, or overall software quality in an organization.
· A project manager who has been put in charge of a project that has been outsourced.

Many software organizations have problems delivering quality software that is finished on time and meets the users’ needs. Luckily, most software project problems have surprisingly few root causes, and these causes are well understood. Solutions to these problems have been discovered, explained, and tested in thousands of software organizations around the world. These solutions are generally straightforward and easy to implement. It’s easy to forget that project management is more than just a technical engineering skill. Good project management really boils down to a few basic principles such as

· Decisions are based on openly shared information.

· Don’t second-guess your team members’ expertise.

· Introduce software quality from the very beginning of the project.

· Don’t impose an artificial hierarchy on the project team.

· Remember that the fastest way through the project is to use good engineering practices.

A project manager needs to understand every facet of software development in order to make good judgments. You don’t need to be a programmer, software tester, requirements analyst, or architect in order to be a good project manager. But you do need to know what these people do, why they are on your team, the common pitfalls they succumb to, and how to fix them. You need to be able to read and understand the documents that they create and provide intelligent feedback. Instead of relying on objective analysis (rather than gut feelings, personal preferences, or a perceived hierarchy within your team), you can use this knowledge in order to make decisions based on the best interests of the project. A few generalized guidelines or influencing factors are given below:
· Tell Everyone the Truth All the Time

· Trust Your Team

· Review Everything, Test Everything

· All Software Engineers Are Created Equal

· Doing the Project Right Is Most Efficient
Tell Everyone the Truth All the Time

A project manager constantly makes decisions about the project. If those decisions are based on real information that’s gathered by the team and trusted by management, that’s the most likely way to make sure the project succeeds. Creating a transparent environment means making all of that information public and explaining the rationale behind your decisions. No software project goes exactly as planned; the only way to deal with obstacles is by sharing the true nature of each problem with everyone involved in the project and by allowing the best solution to come from the most qualified people. List includes:
· Don’t change reality rather than deal with the truth.
· Give realistic deadline

· be open and honest about the real status of the project
· Don’t make up the time

· Don’t be smooth over rough relations among everyone involved
· Be transparent

Trust Your Team

If you are a project manager, it does not necessarily mean that you know more about the project than everyone else on the team. Yet many project managers act in exactly this way. They arbitrarily cut down or inflate any estimates that they don’t understand, or that give them a bad gut feeling. They make every project decision based on how it will affect the schedule, instead of considering how it will affect the software. Managing a project is all about forming a team and making sure that it is productive. The best way to do that is to rely on
· The expertise of the team members.

· Every single role in a software project requires expertise, skill, training, and experience.
· Making informed decisions based on their recommendations.

· Good reason to veto an idea, don’t do it.
· Support, trust and listen to them.
· Don’t trust your team blindly without evaluate their ideas & principles.
Every project manager needs to understand at least the basic principles of software requirements engineering, design and architecture, programming, and software testing in order to guide a software project through all of the phases of development.

Review Everything, Test Everything

People may feel that the only reason for a review is to force various people to sign off on a document as if a signature on a page somehow guarantees that they agree with everything that it’s stapled to. The purpose of a review is not to make a perfect document or to generate a page of signatures. Rather, a review does two things such as

· it prevents defects in the software
· It helps the project manager gain a real, informed commitment from the team.
It may not be possible to catch 100% of the defects before coding has started, but a good review will catch enough defects to more than pay for the time it took to hold the review.

· It is always faster and cheaper to hold a review meeting than it is to skip it.
· Reviews frequently uncover errors in documents whose resolution requires a lot of discussion and decision-making.

· Schedule reviews expose an enormous amount of resistance from everyone.
· On average, every hour spent reviewing and repairing documents saves well over an hour later in the project.
· Bringing team members into a room to evaluate each others’ work, reviews foster respect among the team members for everyone’s contributions.
· A review results in a real commitment to the work that is produced by the team, not just a signature.

All Software Engineers Are Created Equal

A software project requires much more than just writing code. Since the documents, schedules, plans, source code, bug reports, and builds are all created by many different team members. If any one of them has a serious error, that error will have an impact on the end product. That means each team member responsible for any of these work products. A disagreement between a programmer and a tester, a requirements analyst or a business analyst over a programmer, and engineering team members over other skilled persons is completely vanished. It includes
· Treating each idea objectively, no matter who suggests it or whether or not it’s immediately intuitive to organization.
· Every practices, techniques, tools and discipline is equally important.

· Everyone on the team contributes equally to the project.
The best way to make sure that everyone on the team feels respected, valued and gains a true commitment from each person to build the software.
Doing the Project Right Is Most Efficient

You have a lot of freedom to choose the approach that is best for your project. A presentation of techniques, tools, and practices for every phase, you can be sure that the project will be better off with the practice than it would be. This is because building the software correctly the first time is always preferable to do it wrong and having to go back to fix it.

Software engineers are a very practical bunch. They do not like adopting practices unless they believe and will see a net gain from them. A practice must save more time than it costs to implement. Every single tool, technique, and practices (or similar ones) have been used in many successful projects around the world. These practices would not have found such wide-spread adoption if they were not efficient. When a project starts to slip and a deadline looms nearer, it may be tempting to start cutting out these practices will make the project take longer, not make it go faster.

Tools and Techniques

Here, “tool” is used to mean any self-contained concept, practice, technique, or software package that can be applied independently to a software project, in order to improve the way it is performed. Risk management, for example, is as much of a tool as Microsoft Project or Subversion. Many of the practices are described using a process script that contains step-by-step instructions to help guide the team through the practice. “Script” should bring to mind a script read by an actor, rather than a script run by a computer. All scripts follow the same format that contains:

· A name, one-line description of the purpose, and a brief summary.

· A list of work products that are used in the script. Work products are labeled as “input” if they already exist and are used in the script; they are labeled as “output” if they are generated or updated by the script.

· Entry criteria that must be satisfied before the script can begin.

· A basic course of events, which consists of step-by-step instructions to lead the team through the script activities.

· Alternate paths that the team members may follow to deviate from the basic course of events.

· Exit criteria that should be satisfied when the script ends.

It’s not enough for a project manager to understand practices that are used by all of the team members. A good project manager also needs to know how to lead the team.
Chapter 2: Software Project Planning

Software is usually built to address an urgent need. Stakeholders have a concern in the success of the project. For the software engineers, an urgent need means that their work will be appreciated and used in the foreseeable future. And for the management of the organization, it means that there is a clear direction in how they need to run things. But urgency causes people to panic, and to potentially gloss over important parts of the project. People will rush into gathering requirements (or, even worse, rush into building the code!) without thoroughly understanding the needs of the people who want the software to built.
If a project manager and team do not really understand the context in which the software is being built, they may end up with a narrow focus, causing them to waste time and addressing problems that are of little importance to the stakeholders. It’s easy to build great software that solves the wrong problems, but the only way to build the appropriate software is important and is the purpose of project planning.

Understand the Project Needs

When a stakeholder does not feel that his needs are being met, he usually puts pressure on the project manager to provide an early version of the software, so that he can personally verify that the team really understands why the software is being built. This is a big source of communication failure between the people who need the software and the team members who are building it. When the stakeholder asks for an early version or a prototype of the software, he is usually asking for evidence that his needs are understood and being addressed.

A project that starts out likely to experience scope creep, delays, and even outright failure, nobody in the organization will really even understand why the project had so many problems. All they will claim that it is team failure. Even when a team is technically proficient and capable of delivering high-quality, well-written software, when faced with a problematic project, most managers will intuitively feel that the team is incapable of delivering software without major quality problems.

It indicates that the project is facing problems, and then the project manager must identify the people who are making decisions that affect the project and understand why they need the software to build.
Drive the Scope of the Project

When the project begins, the project manager has a unique role to define the scope of the project. Everyone else has a role to play later on:
· Users and stakeholders will provide expertise,
· Requirements analysts will write specifications,
· Programmers will build the code, etc.
Defining the scope is the most productive thing that a project manager can do to get the project underway. For example, many programmers will immediately begin coding proof-of-concept prototypes before even talking to the users or stakeholders; many stakeholders will encourage this because they intuitively feel that they cannot make decisions without seeing something in front of them. But building a working model is a very time consuming way to figure out that a feature is not needed. If time is a concern, this is definitely not an efficient way to build software.

By focusing on discussing the scope and writing a vision and scope document, the project manager can ensure that the team starts out moving in the right direction. Once he starts talking to individual people about what they expect to see in the project and writing down their thoughts, the scope will start to coalesce and people will start feeling comfortable with the direction in which it is going. This is why the project manager is the driving force at the start of the project. When a project team is first assembled, there is almost always a sense of anticipation and excitement among the project team and the stakeholders. The project manager can take advantage of this energy to drive the project in the right direction.

Talk to the Main Stakeholder

The project manager’s first task in any software project is to talk to the main stakeholder. In other words, the project manager needs to find the person who will be in trouble if the software is not developed. A project manager’s job is not unlike that of a tailor fitting someone for a custom suit or dress. By giving exact specifications, the customer can get exactly what he wants. The tailor has to spend more time for customer rather stitching. The project manager should try to form the same sort of relationship with each stakeholder that the tailor does with his customers.

Each stakeholder should feel like the project manager is his main point of contact for any problem or issue with the project. He should feel that the project manager understands his needs, and that he will work to make sure that those needs are addressed in the software. He should be comfortable going to the project manager with any problems or changes at any point during the project’s duration. This sort of goodwill from a stakeholder can often be established in a single conversation or an initial meeting at the beginning of the project. The project manager can do this by blocking out time to meet with the stakeholder, leading him through a conversation about his specific needs, and then showing that he really understood those needs.

Write the Vision and Scope Document

The vision and scope document is one of the most important tools that a project manager has to implement. A good vision and scope document will help a project avoid some of the costliest problems that a project can face. By writing the document and circulating it among everyone involved in the project, the project manager can ensure that each of the stakeholders and engineers shares a common understanding of the needs being addressed.
Some of the most common (and expensive) problems that a project can experience are caused by miscommunication about the basic goals of the project and about the scope of the work to be done. (The scope of a project usually refers to the features that will be developed and the work that will be done to implement those features. It often also includes an understanding of the features that will be excluded from the project.) By controlling the scope, the project manager can make sure that all of the software engineers’ activities are directed toward building software that will fulfill the needs of the stakeholders.

The “vision” part of the vision and scope document refers to a description of the goal of the software. All software is built to fulfill needs of certain users and stakeholders. The project manager must identify those needs and write down a vision statement (a general statement describing how those needs will be filled).

Table 2.1 shows a typical outline for a vision and scope document. When talking to each stakeholder, the project manager should direct the conversation so that all of the topics in the vision and scope document are discussed. (Stakeholders will often appreciate lots of note-taking, because it shows that the project manager is listening to them and taking what they say seriously.)
	1. Problem Statement

a. Project background

b. Stakeholders

c. Users

d. Risks

e. Assumptions

2. Vision of the Solution

a. Vision statement

b. List of features

c. Scope of phased release (optional)

d. Features that will not be developed

 Table 2.1: Vision and Scope Document
The project manager’s goal should be to learn what each user, stakeholder, and project team member thinks about the software in order to develop a single, unified vision and ensure that everyone shares that vision. He should treat the document as a tool to build consensus among the stakeholders and project team members.

· Project background: This section contains a summary of the problem that the project will solve. It should provide a brief history of the problem and an explanation of how the organization justified the decision to build software to address it.

· Stakeholders: This is a bulleted list of the stakeholders. Each stakeholder may be referred to by name, title, or role (“support group manager,” “CTO,” “senior manager”). The needs of each stakeholder are described in a few sentences.

· Users: This is a bulleted list of the users. As with the stakeholders, each user can either be referred to by name or role (“support rep,” “call quality auditor,” “home web site user”). However, if there are many users, it is usually inefficient to try to name each one. The needs of each user are described.

· Risks: This section lists any potential risks to the project. It should be generated by a project team’s brainstorming session. It could include external factors that may impact the project, or issues or problems that could potentially cause project delays or raise issues.

· Assumptions: This is the list of assumptions that the stakeholders, users, or project team have made. Often, these assumptions are generated during a Wideband Delphi estimation session (see Chapter 3). If Wideband Delphi is being used, the rest of the vision and scope document should be ready before the Delphi meeting and used as the basis for estimation. If Wideband Delphi is not being used to generate the assumptions, the project manager should hold a brainstorming session with the team to come up with a list of assumptions instead. (See Chapter 3 for more information on assumptions.)

· Vision statement: The goal of the vision statement is to describe what the project is expected to accomplish. It should explain the purpose, a compelling reason, a solid justification for spending time, money, and resources on the project. The best time to write the vision statement is after talking to the stakeholders and users and writing down their needs; by this time, a concrete understanding of the project should be starting to jell.

· List of features: A feature is as a cohesive area of the software that fulfills a specific need by providing a set of services or capabilities. The project manager can choose the number of features in the vision and scope document by changing the level of detail or granularity of each feature, and by combining multiple features into a single one. Sometimes those features are small (“screw-top cap,” “holds one liter of liquid”); sometimes they are big (“four-wheel drive,” “seats seven passengers”). Adding too many features will overwhelm most readers. Each feature should be listed in a separate paragraph or bullet point. It should be given a name, followed by a description of the functionality that it provides. This description does not need to be detailed; it can simply be a few sentences that give a general explanation of the feature. However, if there is more information that a stakeholder or project team member feels should be included, it is important to include that information.

· Scope of phased release (optional): Sometimes software projects are released in phases in which a version of the software with some subset of the features is released first, and a newer, more complete version is released later. This is useful when there is an important deadline for the software, but developing the entire software project by that deadline would be unrealistic. The most common way to compromise on this release date is to divide the features into two or more releases.

If a project manager needs to release a project in phases, it is critical that the project team be consulted. Some features are much more difficult to divide than others, and the engineers might see dependencies between features that are not clear to the stakeholders and project manager. After the phased release plan is written down and agreed upon, the project team should always be asked to re-estimate the effort and a new project plan should be generated (see below).

· Features that will not be developed: When a feature is explicitly left out of the software, it should be added to this section to tell the reader that a decision was made to exclude it. For example, one way to handle an unrealistic deadline is by removing one or more features from the software, in which case the removed features should be moved into this section. This is especially important during the review of the document because it allows everyone to agree on the exclusion of the feature (or object to it).

Review the vision and scope document

Once the vision and scope document has been written, it should be reviewed by every stakeholder, the members of the project team, and, ideally, by at least a few people who will actually be using the software (if they are available). The project manager should make sure that every-one agrees that the final document really reflects the needs of the stakeholders and the users, and that if they build the software described in the second half of the document, then all of the needs in the first half will be met. Once the document has been reviewed and everyone agrees that it is complete, the team is unified toward a single goal and the project can be planned.

Create the Project Plan

The project plan defines the work that will be done on the project and who will do it. A typical project plan consists of:

· A statement of work that describes all work products (specifications, test plans, code, defect reports, and any other product of work performed over the course of the project) that will be produced and a list of people who will perform that work.
· A resource list that contains a list of all resources that will be needed for the product, and their availability.
· A work breakdown structure and a set of effort estimates.
· A project schedule.
· A risk plan that identifies any risks that might be encountered and indicates how those risks would be handled, should they occur.
The project manager uses it to communicate the project’s status to the stakeholders and senior managers, and to plan the team’s activities. The team members use it to understand the context for the work they are doing. The senior managers use it to verify that the project’s cost and schedule are reasonable and under control, and that the project is being done in an efficient and cost-effective manner. The stakeholders use it to make sure that the project is on track, and that their needs are being addressed.

It is important that the organization reach consensus on the project plan. The project plan is periodically reviewed, and that any deviations from the plan are tracked at the review sessions. Frequent reviews are what can keep the plan from going stale and becoming a work of fiction. It’s difficult, if not impossible, to build a project plan without a vision and scope document. So, the project manager should begin the planning process by first writing a vision and scope document; all other planning activities depend on it, and the time required for the project manager to create it will pay for itself when the project plan is created.

Statement of Work (SOW)
Statement of work is a detailed description of all of the work products that will be created over the course of the project, including who is responsible for creating each work product. The description of each work product should contain a reference to any tasks in the project schedule (see Chapter 4) in which it is involved. The vision and scope document is a useful starting point for the SOW. But the SOW serves a different purpose—while the vision and scope document talks about the rationale for the project (the needs that must be met, the list of users and stakeholders who need it built, etc.) the SOW simply contains a detailed list of the following:

· The list of features being developed. If the software is being released in phases, the features should be divided into those phases as well.

· A description of the intermediate deliverable or work product that will be built. It includes software requirements specifications, design and architecture specifications, class or UML diagrams, code or software packages (divided into separate libraries or modules, if necessary), test plans and test cases, user acceptance plans, and any other document, source code or other work product that will be created. A brief description—no more than a paragraph—is usually sufficient for each one.
· The estimated effort involved for each work product to be delivered (possibly based on the results of the Wideband Delphi estimation session), if known.

Resource List

The project plan should contain a list of all resources that will be used on the project. This list should go beyond what’s covered by the project schedule by including a description of each resource, as well as any limits on that resource’s availability. The resource list can either be a spreadsheet or a word processor document containing a simple list, with one line per resource. The list should give each resource a name, a brief one-line description, availability and cost (if applicable) of the resource. All resources should be handled in the same way, regardless of type.

Estimates and Project Schedule

Once the statement of work and the resource list have been created, the project manager should build a project schedule. This is usually done in several steps:

· A work breakdown structure (WBS) is defined. This is a list of tasks that, if performed, will generate all of the work products needed to build the software.

· An estimate of the effort required for each task in the WBS is generated.

· A project schedule is created by assigning resources and determining the calendar time required for each task.

The project plan should include the complete revision history of the WBS—it should contain a list of any tasks that are added, changed, or removed, and when those changes occurred. It should also include estimates and a project schedule, including any revisions that were made during the review meetings. (Chapter 3 contains a repeatable process for generating a WBS and estimates. Chapter 4 describes how to create a project schedule.)

Risk Plan

A risk plan is a list of all risks that threaten the project, along with a plan to mitigate some or all of those risks. Some people say that uncertainty is the enemy of planning. If there were no uncertainty, then every project plan would be accurate and every project would go off without a hitch. The risk plan is an insurance policy against uncertainty.
Risk assessment is the prediction of potential problems that will threaten the project and take steps to mitigate those problems. Adding a risk plan to a software project plan is an effective way to keep the project from being derailed by surprises or emergencies. The word “assessment” is usually associated with finances or accounting, not with project management. But in this case, it’s appropriate that a good project manager will assess the probability and impact of each risk. In those cases, steps should be taken to hedge the project against the risk; this is usually referred to as “mitigation” when it is done in the context of project planning. Risk planning for most projects can be done in one meeting, usually in less than two hours. The meeting is led by the project manager, who should select a team with the exception that there is no moderator. Table 2.2 contains a script for creating the risk plan.
[image: image1.emf]
 Table 2.2: Risk planning Script
· Brainstorm potential risks: Risks should be as specific as possible. It’s true that “The project might be delayed” or “We will go out of business” are risks; however, they are far too vague to do anything about. When a vague risk comes up, the project manager should prod the team into making it more specific. The assumptions documented in the vision and scope document and identified in the source of potential risks. The team should go through them and evaluate each assumption for potential risks as part of the risk brainstorming session.

· Estimate the impact of each risk: Once the team has generated a final set of risks, they have enough information to estimate two things such as a rough estimate of the probability that the risk will occur, and the potential impact of that risk on the project if it does eventually materialize. The risks must then be prioritized in two ways: in order of probability, and in order of impact. Both the probability and impact are measured using a relative scale by assigning each a number between 1 and 5.

After the probability and impact of each risk have been estimated, the team can calculate the priority of each risk by multiplying its probability by its impact. This ensures that the highest priority is assigned to those risks that have both a high probability and impact, followed by either high-probability risks with a low impact or low-probability risks with a high impact. This is generally the order in which a good project manager will want to try to deal with them and allows the most serious risks to rise to the top of the list.

· Make a mitigation plan: All of this risk brainstorming and estimation is only useful if it leads to the team taking actions to avoid the most pressing risks. The project manager should start with the highest-priority risk, working with the team to decide on any actions that should be taken. After that, the team should move down the list of risks, until they decide that the priority of each of the remaining risks is low enough that no action would be required. The team can take any or all of these actions to mitigate a risk:

· Alter the project plan. The project schedule can be adjusted to help reduce the risk. Riskier tasks can be moved earlier in the project, or given more time.

· Add additional tasks. There are certain actions that can be added to the schedule to help to avoid risks. For example, if there is a high probability that a critical team member will leave the organization, cross-training tasks can be assigned to other people.

· Plan for risks. For risks with a high impact that do not need specific tasks or project plan changes, the project manager should have the team spend a few minutes identifying the steps that should be taken in case the risk does occur.

Once the mitigation steps are identified, all of these risks and actions should be documented in a risk plan.

	Risk plan for project: Call center application project

	Assessment team members : Mike, Barbara, Quentin, Jill, Sophie, Dean, Kyle

	Risk
	Prob.
	Impact
	Priority
	Actions

	Senior management will move call center offshore, which will require an internationalization feature to be built
	3
	5
	15
	1. Mike will add a requirements task to the schedule for Quentin to begin investigating internationalization requirements.

2. If the call center is moved, Mike will call a team meeting to review the schedule and Barbara will inform the rest of senior management of the potential delay.

	Jim will be pulled off of this project for Royalty Archive project bug fixes

	4
	3
	12
	1. Assign Kyle to work with Jill on the initial programming tasks to make sure he is cross-trained.

2. If Jill is pulled off, she will spend 10% of her time reviewing this project with Kyle.

	Reporting feature will be needed

	2
	4
	8
	If this happens, Mike will work with Sophie and Kyle to re-estimate the programming tasks.

	Additional time will be needed to gather requirements from potential users at Boston client
	5
	1
	5
	None

	Will need to support tie-in to support additional database vendors
	1
	3
	3
	None

 Fig.2.1: Risk Plan Script
The easiest way to do that is to create a simple spreadsheet with five columns: Risk (one to three sentences that describe each risk), Probability (the estimated probability from 1 to 5), Impact (the estimated impact from 1 to 5), Priority (Probability × Impact), and Action (the specific actions that will be taken to mitigate the risk, or “None” if the risk is deemed a low enough priority to ignore). Fig.2.1 shows a sample risk plan.

Project Plan Inspection Checklist

The project plan including the project schedule should be reviewed using this inspection checklist:

Statement of work

Does the project plan include a statement of work (SOW)?

Is the SOW complete—does it contain all of the features that will be developed?

Are all work products represented?

If estimates are known, have they been included?

Resources

Does the project plan include a resource list?

Does the resource list contain all resources available to the project?

Are there any resources known to be assigned to other projects at the same time that they are assigned to this one?

Have dates that the resources are unavailable been taken into account?

Project schedule

Does the project plan include a schedule?

Are there any tasks that are missing or incorrect?

Does each task have a predecessor?

Is a resource allocated to each task?

If multiple resources have been assigned to a single task, has the task’s duration been updated properly to reflect that?

Is there a more efficient way to allocate resources?

Does the project schedule contain periodic reviews?

Risk plan

Does the project plan include a risk plan? Are there any risks that are not in the plan?

Are there any assumptions that represent risks that should be included in the plan?

Is each risk prioritized correctly?

Has the impact of each risk been estimated correctly?

Have the risks been sufficiently mitigated?

Diagnosing Project Planning Problems

If a project is not planned well or the project manager does not take the lead in defining the scope immediately, the project will quickly become chaotic. Even if the scope seems to be defined well, the project manager must make sure that all stakeholders really understand and agree to it in order to avoid problems later on in the project.

Lack of Leadership

It’s not uncommon for people to intuitively feel that all they need for a project to be successful is a group of highly talented and motivated people. But even the best people will have trouble starting a project if nobody takes the lead. Without good leadership, the following list of common problems may occur:
· Tunnel vision –Programmers may see a better way to solve a particular problem that will cost time but lead to a better solution.

· The team member might be afraid to make this decision.
· Make decisions based on her gut feelings. As the project progresses, not all of her decisions are in line with the needs of the stakeholders.

· If the scope is never fully defined, then the project may have several false starts. Designers and programmers start building prototypes to demonstrate to stakeholders, only to find that they have to go back and rebuild them because they misunderstood the project needs.
The Mid-Course Correction

A change in the project priorities is one of the most frustrating ways that a software project can break down. After the software design and architecture is finalized, the code is under development, the testers have begun their preparation, and the rest of the organization is gearing up to use and support the software, a stakeholder “discovers” that an important feature is not being developed. This, in turn, wreaks havoc on the project schedules, causing the team to miss important deadlines as they frantically try to go back and hammer the new feature in.

This discovery often comes about very late in the project, when a preliminary build of the software is delivered to the stakeholder. Either way, the team is now demoralized because it knows it would have been much easier to build the right software in the first place instead of having to change halfway through the project. Good project planning helps avoid this problem. A vision and scope document describes the features to be developed using straightforward language, and each of the features clearly fulfills a need that the project stakeholders recognize. Stakeholders are not technical people; they might not be fully comfortable reading technical documents, but they are usually very good about talking about their needs and can generally recognize when those needs are taken into account. Many design or programming problems can be traced back to an engineer who does not fully understand the needs that are being fulfilled.

The Detached Engineering Team

In many organizations, there is an artificial wall between the people who need the software and the people who build it. The engineering team often sees itself as a separate unit. The priorities of the people in the organization who need the software don’t really figure into the way the engineers plan and carry out their work. This seems justified because it will take the team a certain amount of time to do their work, and no amount of bargaining with the business side will change that.
The vision and scope document helps fix this problem by helping the engineer’s under-stand the project priorities. It identifies deadlines that are external to the project and that must be treated as constraints. The team can make sure that those deadlines are addressed directly when they are planning their tasks.

The project plan also fixes this because it represents an agreement between the engineering team, the stakeholders, the users, and the organization’s senior management. The stakeholders, in turn, are given a window into the planning and estimation process, which establishes a level of trust between them and the engineers.

Chapter 3: Estimation

It might seem that estimation is a highly subjective process. One person might take a day to do a task that might only require a few hours of another’s time. As a result, when several people are asked to estimate how long it might take to perform a task, they will often give widely differing answers. But when the work is actually performed, it takes a real amount of time; any estimate that did not come close to that actual time is inaccurate.

To someone who has never estimated a project in a structured way, estimation seems little more than attempting to predict the future. This view is reinforced when estimates are inaccurate and projects come in late. But a good formal estimation process, one that allows the project team to reach a consensus on the estimates, can improve the accuracy of those estimates, making it much more likely that projects will come in on time. A project manager can help the team to create successful estimates for any software project by using sound techniques and understanding what makes estimates more accurate.

Elements of a Successful Estimate

A sound estimate starts with a work breakdown structure (WBS). A WBS is a list of tasks that, if completed, will produce the final product. There are many ways to decompose a project into tasks. The project can be broken down by feature, by project phase (requirements tasks, design tasks, programming tasks, QA tasks, etc.), or by some combination of the two. Ideally, the WBS should reflect the way previous projects have been developed.

A useful rule of thumb is that any project can be broken down into between 10 and 20 tasks. For large projects (for example, a space shuttle), those tasks will be very large (“Test the guidance system”); for small projects (like writing a simple calculator program), the tasks are small (“Build the arithmetic object that adds, multiplies, or divides two numbers”). The team must take care in generating the WBS and if the tasks are incorrect, they can waste time going down in a wrong path.

Once the WBS is created, the team must create an estimate of the effort required to perform each task. The most accurate estimates are those that rely on prior experience. Team members should review previous project results and find how long similar tasks in previous projects took to complete. Sources of delays in the past should be taken into account when making current estimates.

No estimate is guaranteed to be accurate. Therefore, the goal of estimation is not to predict the future. Instead, it is to gauge an honest, well-informed opinion of the effort required to do a task from those people in the organization who have the most applicable training and knowledge.
If two people widely disagree on how long a task will take, it’s likely that the source of that disagreement is that each person made different assumptions about details of the work product or the strategy for producing it. In other words, any disagreement is generally about what is required to perform the task itself, not about the effort required to complete it. By helping the programmers to discuss these assumptions and come to a temporary resolution about their differences, the project manager can help them agree on a single estimate for the task. The project manager can also ensure that the team has reached a consensus on the tasks that must be performed. Finally, the project manager can lead the team in a discussion of assumptions.

Assumptions Make Estimates More Accurate
Once the team has agreed upon a WBS, they can begin to discuss each task so they can come up with an estimate. At the outset of the project, the team members do not have all of the information they need in order to produce estimates. To deal with incomplete information, they must make assumptions about the work to be done. By making assumptions, team members can leave placeholders for information that can be corrected later, in order to make the estimate more accurate.

For the estimates to be most effective, the assumptions must be written down. If an assumption turns out to be incorrect based on discussion, the schedule will need to be adjusted and will be able to point to the exact cause of the delay by showing that a documented assumption turned out to be incorrect. This will help the project manager explain schedule delay to others in the organization. The assumptions also provide a way to keep a record of team decisions, share those decisions with others, and find errors in their decisions.

The team should hold a brainstorming session to try to identify as many assumptions as possible. The bigger the list of assumptions, the lower the overall risk for the project. A project manager may get better results from this session by helping the team see how these assumptions can work to their benefit.

While identifying assumptions that improve with experience, there are a set of questions that can help a novice team member figure out what assumptions he or she needs to make in order to properly estimate the software. The project manager (or a moderator) can use these questions to help to lead the discussion to identify the assumptions:

· Are there project goals that are known to the team but not written in any documentation?

· Are there any concepts, terms, or definitions that need to be clarified?

· Are there standards that must be met but will be expensive to comply with?

· How will the development of this project differ from that of previous projects? Will there be new tasks added that were not performed previously?

· Are there technology and architecture decisions that have already been made?

· What changes are likely to occur elsewhere in the organization that could cause this estimate to be inaccurate?

· Are there any issues that the team is known to disagree on that will affect the project?

The last bullet point is especially important. If one team member believes that the project will go down one path while another team member believes the project will go down a different path, the estimates could vary significantly, depending on which team member is correct. By writing down the assumption, the team keeps a record of the disagreement and leaves open the possibility that this will change in the future. The written assumption will be especially useful later while doing a risk assessment for the project plan because there is a risk that the assumption is incorrect.

Discussing and writing down the assumptions in a team setting helps the team to identify potential roadblocks. For example, the team may have a genuine disagreement about whether or not to develop a user interface for their clock-setting application. The assumption allows the team to reach a temporary decision, knowing that the final decision is still open. Writing down the assumption allows the team to go back and revise the estimate later if it turns out the assumption is wrong—which means that it is vital that everyone understands that the assumptions are allowed to be incorrect. That way, if the team estimated that they would build a command-line program but later the decision was made to go with a full user interface, everyone will be able to explain why the schedule is delayed.

One side effect of writing down the assumptions is that it puts pressure on the senior managers to allow the project to be estimated again if any of the assumptions prove to be incorrect. This is why the project manager should plan on having the vision and scope document updated to include any new assumptions that were identified during the estimation session.

Distrust Can Undermine Estimates

Estimates can either be a source of trust or distrust between the project team and their managers. Estimation can be an effective tool for team motivation. Estimates are most accurate when everyone on the project team feels that he was actively part of the estimation process. Every team member feels a personal stake in the estimates, and will work very hard to meet any schedule based on those estimates.

Estimation is, by its nature, a politically charged activity in most organizations. When a team is asked to create estimates for work, they are essentially being asked to define their own schedule. Stakeholders need the project completed but usually do not have software engineering experience, so they may not be equipped to understand why a project will take, say, six months instead of three. For this reason, project managers must take care to make the estimation process as open and honest as possible so that the stakeholders can understand what’s going on.

It is common for nontechnical people to assume that programmers pad their estimates. This lack of trust causes engineers to automatically pad their estimates, because they know they won’t be given enough time otherwise. And even when the situation is not this bad (although it often is), some environment of distrust still exists to a lesser extent in many organizations.

In many organizations, there are some kinds of estimates for quality and requirements tasks that are not to be taken seriously. Senior managers are often willing to take the programmers’ estimates at face value, even when those estimates are clearly padded. This is because, to them, programming is opaque that the managers and stakeholders don’t understand how code is written, so they assume that all programming tasks are difficult.

Distrust in a software organization can be a serious, endemic problem. It starts with a kernel of distrust between management and the engineering team that the distrust grows until management simply won’t accept the team’s estimates. For example, a senior manager may decide that the team plans to spend too much time testing the software, even though the team reached consensus and all team members stand behind the estimates. A project manager must be especially careful to explain this and support that consensus when senior managers start to pick apart the team’s estimates.

An important part of running successful software projects is reaching a common understanding between the engineers, managers, and stakeholders. Practices allow the engineers’ work to be transparent to the rest of the organization. Similarly, the managers’ and stakeholders’ needs and expectations must be transparent to the engineers. By having key managers attend the estimation session, a project manager can show them that the estimates are made systematically, using an orderly and sensible process, and that they are not just made up on a whim. When the team is having trouble reaching convergence on a task, team members should bring up examples of past results for tasks of similar size and complexity. This transparency helps everyone present (especially the observers) to understand why these estimates come out as they do.

Wideband Delphi Estimation

The Wideband Delphi estimation method was developed in the 1940s at the Rand Corporation as a forecasting tool. It has since been adapted across many industries to estimate many kinds of tasks, ranging from statistical data collection results to sales and marketing forecasts. It has proven to be a very effective estimation tool and it lends itself well to software projects.
The Wideband Delphi estimation process is especially useful to a project manager because it produces several important elements of the project plan. The most important product is the set of estimates upon which the project schedule is built. In addition, the project team creates a work breakdown structure (WBS), which is a critical element of the plan. The team also generates a list of assumptions, which can be added to the vision and scope document.

The discussion among the team during both the kickoff meeting and the estimation session is another important product of the Delphi process. This discussion typically uncovers many important (but previously unrecognized) project priorities, assumptions, and tasks. The team is much more familiar with the work they are about to undertake after they complete the Wideband Delphi process.

Wideband Delphi works because it requires the entire team to correct one another in a way that helps avoid errors and poor estimation. While software estimation is certainly a skill that improves with experience, the most common problem with estimates is simply that the person making the estimate does not fully understand what it is that he is estimating. He may be an experienced software engineer, but if he has not fully explored all of the assumptions behind the estimate, then it will be incorrect. Delphi addresses this problem through the discussion of assumptions and the generation of consensus among the estimation team members.

The Delphi Process

To use Wideband Delphi, the project manager selects a moderator and an estimation team with three to seven members. The Delphi process consists of two meetings run by the moderator.

	Name
	Wideband Delphi script

	Purpose
	A project team generates estimates and a work breakdown structure.

	Summary
	A repeatable process for estimation. Using it, a project team can generate a consensus on estimates for the completion of the project.

	Work Products
	Input : Vision and scope document, or other documentation that defines the scope of the work product being estimated

Output : Work breakdown structure (WBS)

 Effort estimates for each of the tasks in the WBS

	Entry Criteria
	The following criteria should be met in order for the Delphi process to be effective:

• The vision and scope document (or other documentation that defines the scope of the work product being estimated) has been agreed to by the stakeholders, users, managers, and engineering team. If no vision and scope document is available, there must be enough supporting documentation for the team to understand the work product.

• The kickoff meeting and estimation session have been scheduled (each at least two hours).

• The project manager and the moderator agree on the goal of the estimation session by identifying the scope of the work to be estimated.

	Basic Course
of Events
	1. Choosing the team. The project manager selects the estimation team and a moderator. The team should consist of three to seven project team members. The team should include representatives from every engineering group that will be involved in the development of the work product being estimated.

2. Kickoff meeting. The moderator prepares the team and leads a discussion to brainstorm assumptions, generate a WBS, and decide on the units of estimation.

3. Individual preparation. After the kickoff meeting, each team member individually generates the initial estimates for each task in the WBS, documenting any changes to the WBS and missing assumptions.

4. Estimation session. The moderator leads the team through a series of iterative steps to gain consensus on the estimates. At the start of the iteration, the moderator charts the estimates on the whiteboard so the estimators can see the range of estimates. The team resolves issues and revises estimates without revealing specific numbers. The cycle repeats until either no estimator wants to change his or her estimate, the estimators agree that the range is acceptable, or two hours have elapsed.

5. Assembling tasks. The project manager works with the team to collect the estimates from the team members at the end of the meeting and compiles the final task list, estimates, and assumptions.

6. Reviewing results. The project manager reviews the final task list with the estimation team.

	Alternative Paths
	1. During Step 1, if the team determines that there is not enough information known about the project to perform an estimate, the script ends. Before the script can be started again, the project manager must document the missing information by creating or modifying the vision and scope document.
2. During either Step 1 or 3, if the team determines that there are outstanding issues that must be resolved before the estimate can be made, they agree upon a plan to resolve the issues and the script ends.

	Exit Criteria
	The script ends after the team has either generated a set of estimates or has agreed upon a plan to resolve the outstanding issues.

 Table 3.1: Wideband Delphi Script
The first meeting is the kickoff meeting, during which the estimation team creates a WBS and discusses assumptions. After the meeting, each team member creates an effort estimate for each task. The second meeting is the estimation session, in which the team revises the estimates as a group and achieves consensus. After the estimation session, the project manager summarizes the results and reviews them with the team, at which point they are ready to be used as the basis for planning the software project. The script in Table 3-1 describes the Wideband Delphi process.

1. Kickoff meeting. The moderator prepares the team and leads a discussion to brainstorm assumptions, generate a WBS, and decide on the units of estimation.

2. Individual preparation. After the kickoff meeting, each team member individually generates the initial estimates for each task in the WBS, documenting any changes to the WBS and missing assumptions.

3. Estimation session. The moderator leads the team through a series of iterative steps to gain consensus on the estimates. At the start of the iteration, the moderator charts the estimates on the whiteboard so the estimators can see the range of estimates. The team resolves issues and revises estimates without revealing specific numbers. The cycle repeats until either no estimator wants to change his or her estimate, the estimators agree that the range is acceptable, or two hours have elapsed.

4. Assembling tasks. The project manager works with the team to collect the estimates from the team members at the end of the meeting and compiles the final task list, estimates, and assumptions.

5. During either Step 1 or 3, if the team determines that there are outstanding issues that must be resolved before the estimate can be made, they agree upon a plan to resolve the issues and the script ends.

Hence the basic course of events is exposed as follows:
· Choosing the team: Picking a qualified team is an important part of generating accurate estimates. Each team member must be willing to make an effort to estimate each task honestly, and should be comfortable working with the rest of the team. The free flow of information is essential, and the project manager should choose a group of people who work well together. The estimators should all be knowledgeable enough about the organization’s needs and past engineering projects (preferably similar to the one being estimated) to make educated estimates.

The moderator should be familiar with the Delphi process, but should not have a stake in the outcome of the session, if possible. Project managers are sometimes tempted to fill the moderator role, but this should be avoided (if at all possible) because the project manager should ideally be part of the estimation team. This is because the PM needs to take an active role in the discussion of the assumptions. The role of the moderator is to listen to the discussion, ask open-ended questions, challenge the team to address issues, and ensure that everyone on the team is contributing. The moderator may estimate, but if he does, it is important that he remain unbiased by the team’s estimates. A well-chosen team will allow the moderator to sit out on the estimation tasks and remain neutral and open-minded during the discussion.

The project manager should choose the team in which it includes representatives from as many areas of the development team as possible such as managers, developers, designers, architects, QA engineers, requirements analysts, technical writers, etc. Most importantly, each of the team members should have a stake in the plan, meaning that his goal is to establish a plan which he can agree to and live with. This allows the Delphi process to serve as an important tool for gaining the engineering team’s support for the project plan, giving all involved a feeling of ownership of the estimates on which it is based.

Finally, one or more observers, selected stakeholders, users, and managers should be encouraged to attend the meeting. Including observers is an effective way to encourage mutual trust between the team and the nontechnical people in the organization. While the observers do not directly contribute to the numerical estimates, encouraging their involvement in the meetings will increase their feeling of ownership of the final estimates that are generated by the team.

· Kickoff meeting: The goal of the kickoff meeting is to prepare the team for the estimation session. When the kickoff meeting is scheduled, each team member is given the vision and scope document and any other documentation that will help to understand the project estimation. The team members should read all of the material before attending the meeting.

In addition, a goal statement for the estimation session should be agreed upon by the project manager and the moderator and distributed to the team before the session. This statement should be no more than a few sentences that describe the scope of the work that is to be estimated (“Generate estimates for programming and testing the first phase of Project X”). The moderator leads the meeting, which consists of the following activities:

· The moderator explains the Wideband Delphi method to any new estimators.

· If any team member has not yet read the vision and scope document and supporting documentation, the moderator reviews it with the team. (If this happens, the meeting should be expected to take an extra half-hour to hour.)

· The moderator reviews the goal of the estimation session with the team, and checks that each team member is sufficiently knowledgeable to contribute.

· The team discusses the product being developed and brainstorms any assumptions.

· The team generates a task list consisting of 10–20 major tasks. These tasks represent the top level of the work breakdown structure and additional detail can be generated later and/or discussed in the assumptions. This high-level task list is the basis for the estimates that are going to be created.

· The team agrees on the units of estimation (days, weeks, pages, etc.).

The team must agree on the goal of the project estimation session before proceeding with the rest of the estimation process. Disagreement could focus on missing requirements, on which programs or tasks are to be included, on whether or not to estimate user documentation or support requirements or other basic scope issues.

After the assumptions are discussed, the moderator leads a brainstorming session to generate the WBS. The team breaks the project down into between 10 and 20 tasks, representing all of the project activities that must be performed. Once the team is comfortable with the WBS and the assumptions, it will feel much more knowledgeable about the context in which it will be developing the software. This, in turn, will make everyone more comfortable with the team’s estimates.

· Individual preparation: After the kickoff meeting, the moderator writes down all of the assumptions and tasks that were generated by the team during the kickoff meeting and distributes them to the estimation team. Each team member independently generates a set of preparation results, a document which contains an estimate for each of the tasks, any assumptions that the team member made in order to create the estimates. (Fig.3.1 shows the format of the individual preparation results.) Each team member builds preparation results by first filling in the tasks, and then estimating the effort for each task. An estimate for each task should be added to the “Tasks to achieve goal” section of the preparation results; the “Time” column should contain the estimate for each task.
[image: image2.emf]
 Fig.3.1: Individual Preparation Results

Each estimate should be made in terms of effort, not calendar time. This means that if the unit of estimation is “days,” then the estimate should be for the total number of person-days spent. Any effort related to project overhead should not be taken into account. This includes things like status meetings, reports, vacation, etc. Often, a separate Delphi session will be held specifically to estimate waiting time or overhead tasks. This is the purpose of the checkboxes at the top of the estimation form in Fig.3.2. While estimating each task, most people realize that they must make additional assumptions in order to estimate tasks. These should be recorded in the “Assumptions” section of the preparation results. They may also discover additional tasks that were not found during the kickoff meeting—these missing tasks should be added to the “Task list” section and estimated along with the rest of the WBS tasks.
[image: image3.emf]
 Fig.3.2: Filled in Estimation form
The final result should be a complete task list, including any additional tasks found, waiting time, and overhead tasks, with an estimate attached to each task. Each team member should bring the results to the estimation session.

· Estimation session: The estimation session starts with each estimator filling out an estimation form. Blank estimation forms should be handed out to meeting participants, who fill in the tasks and their initial estimates from their individual preparations. During the estimation session, the team members will use these estimation forms to modify their estimates. After the estimation session, they will serve as a record of each team member’s estimates for the individual tasks, which the project manager uses when compiling the results. (Fig.3.2 shows an example of a typical filled-in estimation form). Before the team members fill in their forms, the moderator should lead a brief discussion of any additional tasks that were discovered during the individual preparation phase. Each task that the team agrees to add to the WBS should be added to the form; the team will generate estimates for that task later in the meeting. The estimate for that task should be written into the “Estimate” box next to the task. The estimate boxes are then added up and the total written into the “Total” box at the bottom of the Estimate column. The moderator then leads the team through the estimation session:

1. [image: image6.jpg]

The moderator collects all of the estimate forms. The estimates are tabulated on a whiteboard by plotting the totals on a line (see Fig.3.3). The forms are returned to the estimators.

 Round 10 10[image: image4.jpg]

 20
30 40 50 60
 70
 80
 Effort estimates
 Fig.3.3: Initial Estimates
2. Each estimator reads out clarifications and changes to the task list written on the estimation form. Any new or changed tasks, discovered assumptions, or questions are raised. Specific estimate times are not discussed.

3. The team resolves any issues or disagreements that are brought up. Since individual estimate times are not discussed, these disagreements are usually about the tasks themselves, and are often resolved by adding assumptions. When an issue is resolved, team members should write clarifications and changes to the task list on their estimation forms. This process usually takes about 40 minutes for the first round, and 20 minutes for the following rounds.
4. The estimators all revise their individual estimates by filling in the next “Delta” column on their forms. (Using a delta allows the estimators to write “+4” or “-3” to add 4 or remove 3 from the estimate. They write the new total at the bottom of the sheet.)

This cycle repeats until either all estimators agree that the range is acceptable, the estimators feel they do not need to change their estimates, or two hours have elapsed. Each round brings the estimates closer to convergence. Fig.3.4 shows what the typical results of an estimation session will look like.

[image: image7.jpg]

 Round 40
 Round 30
 Round 20

 Round 10
 10
 20
30 40 50 60
 70
 80

 Fig.3.4: Converging estimate results
One effective way to resolve these disagreements is to talk about both sides of the issue, and then agree on an assumption that takes one of those sides. It is easier to make this decision at this stage because the assumption is not permanent; the team can very easily go back and change that assumption, if necessary. But writing down the assumption allows the team to show management that if this assumption turns out to be incorrect, the estimate may no longer be accurate. This way, even though the estimate is not perfect, the team understands why that is the case. After the conclusion of the estimation cycle, the moderator leads a discussion on how the session went. The team suggests ways to improve. The moderator notes their feedback, to include it in the final estimation report.

· Assemble tasks: After the estimation meeting is finished, the project manager works with the moderator to gather all of the results from the individual preparation and the estimation session. The project manager removes redundancies and resolves remaining estimate differences to generate a final task list, with effort estimates attached to each task. The assumptions are then summarized and added to the list. The final task list should be in the same format as the individual preparation results (see Fig.3.1). In addition, the project manager should create a spreadsheet should indicate the best-case and worst-case scenarios, and it should indicate any place that further discussion will be required. Any task with an especially wide discrepancy should be marked for further discussion. Fig.3.5 shows an example of a spreadsheet that summarizes the results. [image: image5.emf]
 Fig.3.5: Summarized results of Estimation

It contains a column for each estimator, as well as columns for the best-case estimate (using the lowest estimates, which assume that everything has gone well), worst-case estimate (using the highest estimates, which assume that the project hit many roadblocks), and average estimate.
Sometimes there may be a team member who disagrees with the team’s assessment estimate for a task, and continues to disagree with it over the course of the project. The project manager must be careful in this situation, especially if the disagreement is over a task that will be assigned to that team member. An important part of the Delphi process is that it generates consensus among the team about the final schedule. That consensus can be much harder to achieve if any of the team members feels like her objections are being ignored. The rest of the team will at least feel like his objections were heard and evaluated on their merits, rather than just rejected outright.
· Review results: Once the results are ready, the project manager calls a final meeting to review the estimation results with the team. The goal of the meeting is to determine whether the results of the session are sufficient for further planning. The team should determine whether the estimates make sense and if the range is acceptable. They should also examine the final task list to verify that it’s complete.

Other Estimation Techniques

Wideband Delphi is not the only technique that can be effective in estimating software tasks. Here are a few popular and effective alternatives:
PROBE: Proxy Based Estimating (PROBE) is the estimation method introduced by Watts Humphrey (of the Software Engineering Institute at Carnegie Mellon University) as part of the Personal Software Process (a discipline that helps individual software engineers monitor, test, and improve their own work). PROBE is based on the idea that if an engineer is building a component similar to one he built previously, and then it will take about the same effort as it did in the past. In the PROBE method, individual engineers use a database to keep track of the size and effort of all of the work that they do, developing a history of the effort they have put into their past projects, broken into individual components. Each component in the database is assigned a type (“calculation,” “data,” “logic,” etc.) and a size (from “very small” to “very large”). When a new project must be estimated, it is broken down into tasks that correspond to these types and sizes. A formula based on linear regression is used to calculate the estimate for each task. Additional information on PROBE can be found in A Discipline for Software Engineering by Watts Humphrey (Addison Wesley, 1994).

COCOMO II: The Constructive Cost Model (COCOMO) is a software cost and schedule estimating method developed by Barry Boehm in the early 1980s. Boehm developed COCOMO empirically by running a study of 63 software development projects and statistically ana-lyzing their results. COCOMO II was developed in the 1990s as an updated version for modern development life cycles, and it is based on a broader set of data. The COCOMO calculation incorporates 15 cost drivers, variables that must be provided as input for a model that is based on the results of those studied projects. These variables cover software, computer, personnel, and project attributes. The output of the model is a set of size and effort estimates that can be developed into a project schedule. Additional information on COCOMO can be found in Software Cost Estimation with Cocomo II by Barry Boehm et al. (Prentice Hall PTR, 2000).

The Planning Game: The Planning Game is the software project planning method from Extreme Programming (XP), a lightweight development methodology developed by Kent Beck in the 1990s at Chrysler. It is a method used to manage the negotiation between the engineering team (“Development”) and the stakeholders (“Business”). It gains some emotional distance from the planning process by treating it as a game, where the playing pieces are “user sto-ries” written on index cards and the goal is to assign value to stories and put them into production over time.

Unlike Delphi, PROBE, and COCOMO, the Planning Game does not require a documented description of the scope of the project to be estimated. Rather, it is a full planning process that combines estimation with identifying the scope of the project and the tasks required to complete the software. Additional information on the Planning Game can be found in Extreme Programming Explained by Kent Beck (Addison Wesley, 2000).

Diagnosing Estimation Problems

Estimation problems almost always boil down to estimates that are either too high or too low. Padded estimates, where the team intentionally overestimates in order to give themselves extra time, are a chronic source of estimates that are too high. Senior managers giving unre-alistic, overly aggressive deadlines are a chronic source of estimates that are too low. In both cases, this can lead to morale problems. There is a basic tug-of-war going on here. Engineers prefer higher estimates, giving them as much time and as little pressure as possible to do their work. Managers prefer to deliver things more quickly, in order to please stakeholders. The only way for a project manager to avoid this conflict is to work with the team to produce estimates that are as accurate as possible.

Padded Estimates Generate Distrust

In some organizations, the project team drives the entire estimation process and the project manager simply builds a schedule around their estimates. This can be comfortable for the team, but it does not always work well for the organization, and it can eventually lead to an environment where the managers don’t trust the programmers.

The situation is especially bad when someone with no formal training in software engineering and little experience estimating software tasks is asked by her manager to give estimates. Either of these options can lead to unreliable estimates that throw off the entire project planning process. A project manager could avoid the problem of estimates that are chronically padded by having the team reach a consensus on their estimates in an open meeting, where team members are less likely to pad their numbers.

Self-Fulfilling Prophecy

Some project managers respond to an unrealistic deadline by creating “estimates” that are too low but that meet it. Sometimes a team makes up for their project manager’s poor estimates through enormous effort and overtime. When this happens, those poor esti-mates become a self-fulfilling prophecy instead of being an honest assessment of the work that the team expects to do.

Typically, the self-fulfilling prophecy happens when the project manager is the sole source of estimates. He will create a project schedule with aggressive deadlines. Often, he will set the deadline first, and then work backward to fill in the tasks. The effort required to perform each task is not taken into account, nor is the relative expertise of each team member. If the deadlines are too aggressive but not entirely impossible, the team will work to meet them. This may seem like a good thing to the project manager where he was able to get more work out of the team. But, as the team begins to burn out, they start to realize that they are working toward an unrealistic project schedule. The project does not go smoothly.
Had the project manager used a consensus-driven estimation process, the team would have been able to go into the project with a real understanding of what would be asked of them. They would know at the outset that the project would require crunch periods, and would be able to plan their lives around them instead of being blindsided by them. And the project manager would be able to keep the team together, without causing them to feel bitter or exploited.

Question Bank
1. List out and explain the important guide lines for software project management?

2. Discuss the importance of project planning? List the project needs and explain them.

3. Give a brief overview on vision and scope document. Explain its template.

4. Illustrate the steps involved in project planning with example.

5. Define risk. Explain its risk plan. Describe the procedure for developing the script.
6. Explain mitigation plan with example.

7. Discuss the problems diagnosed in project planning. Explain them.

8. What is estimation? Discuss its advantages.

9. List out and explain the required elements for a successful estimation.

10. What is Wideband-Delphi Estimation? Explain basic steps with example.
11. Explain Wideband-Delphi script with example.

12. Elaborate the basic course of events in Delphi process with example.

13. Briefly explain other estimation techniques.

14. List out and explain diagnosed problems in estimation.

